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Abstract  

 Dark red single crystals of PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) have been synthesized 

through the reaction of elemental rare earth metals and S using a Sb2S3 flux at 1000 °C.  These 

isotypic compounds adopt the F-Ln2S3 three-dimensional open channel structure type.  Eight-

coordinate Pr3+ ions sit in the channels, which are constructed from three different edge-shared 

double chains running down the b axis, which contain Yb(1)S6 octahedra, Yb(2)S6, octahedra and 

LnS7 monocapped trigonal prisms, respectively.  Each double chain connects to four other 

neighbors by sharing vertices and edges.  Considerable disordering in Ln positions was observed 

in single X-ray diffraction experiments only in the case of Pr/Yb.  Least square refinements gave 

rise to the formulas of Pr1.34Yb2.66S6, of PrTbYb2S6, and PrDyYb2S6, which are confirmed by the 

elemental analysis and magnetic susceptibility measurements.  Pr1.34Yb2.66S6, PrTbYb2S6 and 

PrDyYb2S6 are paramagnetic down to 2 K without any indications of long range magnetic 

ordering.  The optical transitions for Pr1.34Yb2.66S6, PrTbYb2S6, and PrDyYb2S6 are at 

approximately 1.6 eV. Crystallographic data: Pr1.34Yb2.66S6, monoclinic, space group P21/m, a = 

10.960(2), b = 3.9501(8), c = 11.220(2) Å, β = 108.545(3), V = 460.54(16), Z = 2; PrTbYb2S6, 

monoclinic, space group P21/m, a = 10.9496(10), b = 3.9429(4), c = 11.2206(10) Å, β = 

108.525(2), V = 459.33(7), Z = 2;  PrDyYb2S6, monoclinic, space group P21/m, a = 10.9384(10), 

b = 3.9398(4), c = 11.2037(10) Å, β = 108.612(2), V = 457.57(7), Z = 2. 
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Introduction 

 
There have been numerous studies on ternary interlanthanide chalcogenides in terms of 

their diverse structural chemistry and interesting physical properties [1-18].  α-LnLn'S3 [1-4] 

(GdFeO3 type [19]), CeYb3S6 [5,6] (F-Ln2S3 type [20,21]), Sc2Er3S7 [7] (Y5S7 type [22]) and 

EuLn2Q4 [8-10] (CaFe2O4 type [23]) possess three-dimensional open channel structures, wherein 

the larger Ln3+ ions sit in the channels formed by smaller lanthanide chalcogenides polyhedra.  

While β-LnLn'Q3 (Q = S, Se) [3,11,12] (UFeS3 type [24]), and γ-LnLn'S3 (Ln = La, Ce; Ln' = Er, 

Tm, Yb) [13] have layers of Ln'Qx polyhedra, separated by larger Ln3+ ions.  δ-LnLuS3 (Ln = Ce, 

Pr, Nd) [14] (CeTmS3 type [15]) have a very condensed three-dimensional structure.  Recent 

work has shown that the electronic and magnetic properties of these materials highly depend on 

the structures they adopt and the choices of lanthanides.  For example, the optical band gap of   

γ-LnLn'S3 (Ln = La, Ce; Ln' = Er, Tm, Yb) [13] are approximately 1.3 – 1.6 eV, while SmEr3S6 

is 2.4 – 2.6 eV [16].  δ-LnLuS3 (Ln = Pr, Nd) exhibit possible short-range antiferromagnetic 

ordering at low temperatures [14].   

In contrast, there are no existing ordered quaternary interlanthanide chalcogenides that 

possess three different lanthanide elements.  Instead of making new ordered quaternary phases, 

they can be prepared using intermediate lanthanides to substitute in the disordered sites in 

already known ternary structures.  F-Ln2S3 type [17,18] ternary compounds are probably the best 

candidates to achieve this goal.  This structure type has three different coordination environments 

for Ln3+ as octahedral, and mono- and bicapped prisms.  The seven-coordinate sites are often 

disordered.  By carefully choosing three different metals, ordered quaternary phases can be 

accessed.  In this paper, we present the syntheses, structure, optical and magnetic properties of 
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first two partial ordered quaternary interlanthanide chalcogenides, PrTbYb2S6 and PrDyYb2S6.  

As a reference, Pr1.34Yb2.66S6 is also included in the discussion. 

Experimental 

Starting Materials.  Pr (99.9%, Alfa-Aesar), Tb (99.9%, Alfa-Aesar), Dy (99.9%, Alfa-

Aesar), Yb (99.9%, Alfa-Aesar), S (99.5%, Alfa-Aesar), and Sb (99.5%, Alfa-Aesar) were used 

as received.  The Sb2S3 flux was prepared from the direct reaction of the elements in sealed 

fused-silica ampoules at 850 °C. 

Syntheses.  PrLnYb2S6 (Ln = Tb, Dy) were prepared through the reaction of Pr (0.17 

mmol), Ln (0.17 mmol), Yb (0.34 mmol), S (1.02 mmol), and Sb2S3 (0.17 mmol). For 

Pr1.34Yb2.66S6, the reaction mixture consists of Pr (0.23 mmol), Yb (0.45 mmol), S (1.02 mmol), 

and Sb2S3 (0.17 mmol). All of the reactants were loaded into fused-silica ampoules under an 

argon atmosphere in a glovebox.  The ampoules were sealed under vacuum and heated in a 

programmable tube furnace. The following heating profile was used: 2 °C/min to 500 °C (held 

for 1 h), 0.5 °C/min to 1000 °C (held for 5 d), 0.04 °C/min to 550 °C (held for 2 d), and 0.5 

°C/min to 24 °C. Powder X-ray diffraction measurements were used to confirm phase purity by 

comparing the powder patterns calculated from the single crystal X-ray structures with the 

experimental data.  Semi-quantitative SEM/EDX analyses were performed using a JEOL 

840/Link Isis or JEOL JSM-7000F instruments.  Pr, Ln, Yb, and S percentages were calibrated 

against standards.  Sb was not detected in the crystals.  Pr:Ln:Yb:S ratios of close to 1:1:2:6 were 

found for PrLnYb2S6 (Ln = Tb, Dy), while the Pr:Yb:S ratios in Pr1.34Yb2.66S6 samples are 

approximately 2:1:4.5 from EDX analyses.  

Crystallographic Studies.  Single crystals of PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) were 

mounted on glass fibers with epoxy and optically aligned on a Bruker APEX single crystal X-ray 
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diffractometer using a digital camera.  Initial intensity measurements were performed using 

graphite monochromated Mo Kα (λ = 0.71073 Å) radiation from a sealed tube and 

monocapillary collimator.  SMART (v 5.624) was used for preliminary determination of the cell 

constants and data collection control.  The intensities of reflections of a sphere were collected by 

a combination of 3 sets of exposures (frames).  Each set had a different φ angle for the crystal 

and each exposure covered a range of 0.3° in ω.  A total of 1800 frames were collected with 

exposure times per frame of 10 or 20 seconds depending on the crystal. 

 For PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy), determination of integrated intensities and global 

refinement were performed with the Bruker SAINT (v 6.02) software package using a narrow-

frame integration algorithm.  These data were treated first with a face-index numerical 

absorption correction using XPREP [25], followed by a semi-empirical absorption correction 

using SADABS [26].  The program suite SHELXTL (v 6.12) was used for space group 

determination (XPREP), direct methods structure solution (XS), and least-squares refinement 

(XL) [25].  The final refinements included anisotropic displacement parameters for all atoms and 

secondary extinction.  Some crystallographic details are given in Table 1.  Atomic coordinates 

and equivalent isotropic displacement parameters for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) are given 

in Table 2-4.  Additional crystallographic details can be found in the Supporting Information. 

The formula of F-Ln2S3 type compounds can be expressed as (AVIII)(BVII)(CVI)2S6.  In the 

case of Pr1.34Yb2.66S6, eight-coordinate A sites were assigned as Pr atoms and both of seven-

coordinate B and octahedral C positions were named as Yb at the beginning of the refinement.  

However the average bond distance of YbS7 is longer than the accepted value, according to 

Shannon’s radii data [27], and its thermalparameter is larger than the other Yb atoms.  The 

elementary analysis showed that the ratio of Pr:Yb is 1:2.  All of these evidences suggest that 
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there should be certain amount of disordering on B sites.  The refinement of occupancy lowered 

the residual and weighting scheme and give rise to the final formula of Pr1.34(1)Yb2.66(1)S6. 

For PrLnYb2S6 (Ln = Tb, Dy), Pr, Ln, Yb atoms were put in A, B, and C positions 

respectively.  This gave excellent residuals in the refinements and the suggested formulas as 

PrLnYb2S6 (Ln = Tb, Dy) are consistent with the EDX results.  Considering the similarity among 

Pr, Ln, and Yb, small amount of disordering on B and C, even A sites can not be excluded. 

Powder X-ray Diffraction.  Powder X-ray diffraction patterns were collected with a 

Rigaku Miniflex powder X-ray diffractometer using Cu Kα (λ = 1.54056 Å) radiation. 

 Magnetic Susceptibility Measurements.  Magnetism data were measured on powders in 

gelcap sample holders with a Quantum Design MPMS 7T magnetometer/susceptometer between 

2 and 300 K and in applied fields up to 7 T.  DC susceptibility measurements were made under 

zero-field-cooled conditions with an applied field of 0.1 T.  Susceptibility values were corrected 

for the sample diamagnetic contribution according to Pascal’s constants [28] as well as for the 

sample holder diamagnetism.  θp values were obtained from extrapolations from fits between 100 

and 300 K.   

 UV-vis-NIR Diffuse Reflectance Spectroscopy.  The diffuse reflectance spectra 

PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) were measured from 200 to 1500 nm using a Shimadzu 

UV3100 spectrophotometer equipped with an integrating sphere attachment.  The Kubelka-

Munk function was used to convert diffuse reflectance data to absorption spectra [29]. 

 

Results and discussion 

Structures of PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) 
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The isotypic series of PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) have the F-Ln2S3 type structure 

with Pr3+ ions sitting on eight-coordinate positions, Ln3+ ions in seven-coordinate positions and 

Yb3+ ions occupying two octahedral sites.  As shown in Figure 1, the structure of these 

compounds is constructed from three different edge-shared double chains running down the b 

axis, which contain Yb(1)S6 octahedra, Yb(2)S6 octahedra, and LnS7 monocapped trigonal prisms, 

respectively.  Each double chain connects to four other neighbors by sharing vertices and edges 

to form the channels where Pr3+ ions reside.  For example, Yb(1)S6 double chains are bound to 

two Yb(2)S6 double chains via corner-sharing and two LnS7 double chains via edge-sharing.  The 

PrS8 polyhedra can be viewed as a bicapped trigonal prism, which is shown in Figure 2.   

Selected bond distances for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) are listed in Table 5.  Pr-S 

bond distances rang from 2.8755(19) Å to 3.0127 Å, which are comparable to Shannon’s radii 

data of 2.966 Å [27].  The average bond distances for Pr/YbS7, TbS7, and DyS7 are 2.807(2) Å, 

2.800(2) Å, and 2.792(2) Å respectively. Compared to the accepted values for PrS7 (2.89 Å), 

YbS7 (2.765 Å), TbS7 (2.82 Å), and DyS7 (2.81 Å), they are all reasonable [27].  The bond 

distances for YbS6 octahedra are in the range of 2.6134(14) Å and 2.759(2) Å.  

Magnetic susceptibility 

The magnetic susceptibilities for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy), in the range of 2-300 

K, are presented in Figure 3- 5.  There are no indications of long range magnetic orderings down 

to 2 K.  Pr1.34Yb2.66S6 deviates from the ideal Curie-Weiss law below 70 K due to crystal-field 

splitting of lanthanide ions.  PrTbYb2S6 shows a pure Curie-Weiss paramagnetic behavior in the 

whole temperature range.  While the 1/χ plot for PrDyYb2S6 exhibits a deviation from the Curie-

Weiss law and the onset of upward curvature at low temperature.  This may indicate a short-

range antiferromagnetic ordering, which has been observed in compound δ-Pr1.29Lu0.71S3 [14] in 
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previous report.  Table 6 shows the magnetic parameters for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy), 

which were obtained from fitting the data in the range of 100 K and 300 K into the Curie-Weiss 

law.  All of compounds have negative value of θp, which indicates antiferromagnetic interactions 

between cations.  The experimental effective magnetic moments for these compounds are close 

to the accepted values [30].  This provides further supporting evidence for the proposed formula 

from the single crystal X-ray experiments. 

  Optical properties 

The UV-vis-NIR diffuse reflectance spectra of PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy) are 

present in Figure 6.  They are very similar to each other.  This suggests that the substitutions 

using different lanthanides ions in seven-coordinate Ln positions hardly change the band 

structures near the Fermi level for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy).  The optical transition is 

mainly contributed from the interactions among eight-coordinate Pr3+ cations, six-coordinate 

Yb3+ cations and S2- anions.  It is also possible that the 4f-band of Pr, Yb, Tb, and Dy lie deep in 

the valence band.  So the optical transitions are determined by the same gap between the [S]3p 

valence band and 5d(6s) conduction band [31,32].  The band gaps of PrLnYb2S6 (Ln = Pr/Yb, Tb, 

Dy) are approximately 1.6 eV, which are consistent with the dark red color they possess.  They 

are also close to the values we reported for γ-LnLn'S3 (Ln = La, Ce; Ln' = Er, Tm, Yb) [13] and 

δ-Ln2-xLuxS3 (Ln = Ce, Pr, Nd; x = 0.67-0.71) [14]. 

 

Conclusions 

 First two partial ordered quaternary interlanthanide sulfides PrLnYb2S6 (Ln = Tb, Dy) 

were prepared and characterized.  They adopt same F-Ln2S3 type structure as the parent 

disordered Pr1.34Yb2.66S6 phase.  All three compounds are paramagnetic in the range of 2 and 300 
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K.  The UV-vis-NIR diffuse reflectance spectra show that these compounds have very similar 

electronic structures near the Fermi level with wide band gaps.  The elemental analysis and 

magnetic susceptibility measurements are consistent with the proposed formula.   
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Table 1.  Crystallographic Data for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy). 

 

Formula Pr1.34Yb2.66S6 PrTbYb2S6 PrDyYb2S6 

fw 841.31 838.27 841.85 

Color dark red dark red dark red 

Crystal System monoclinic monoclinic monoclinic 

Space group P21/m (No. 11) P21/m (No. 11) P21/m (No. 11) 

a (Å) 10.960(2) 10.9496(10) 10.9384(10) 

b (Å) 3.9501(8) 3.9429(4) 3.9398(4) 

c (Å) 11.220(2) 11.2206(10) 11.2037(10) 

β 108.545(3) 108.525(2) 108.612(2) 

V (Å3) 460.54(16) 459.33(7) 457.57(7) 

Z 2 2 2 

T (K) 193 193 193 

λ (Å) 0.71073 0.71073 0.71073 

ρcalcd (g cm–3) 6.067 6.061 6.110 

µ (cm–1) 349.71 342.64 348.32 

R(F)a 0.0233 0.0330 0.0243 

Rw(Fo
2) b 0.0657 0.1104 0.0597 

a ( )R F F F F= −∑ ∑o c o  for Fo
2 > 2σ(Fo

2). b ( ) ( )R F w F F wFw o
2

o
2

c
2 2

o
4

1 2

= −





∑ ∑





. 
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Table 2.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters for 

Pr1.34Yb2.66S6.  

Atom (site) x y z Ueq (Å
2)a 

Pr1 0.55123(4) 0.25 0.19606(4) 0.00843(13) 

Pr/Yb 0.18137(4) 0.25 0.00138(4) 0.01093(16) 

Yb1 0.94227(3) 0.25 0.33496(3) 0.00997(13) 

Yb2 0.65971(3) 0.25 0.58575(3) 0.01011(13) 

S1 0.41859(19) 0.25 0.59374(19) 0.0086(4) 

S2 0.8937(2) 0.25 0.5587(2) 0.0100(4) 

S3 0.23343(19) 0.25 0.76947(19) 0.0090(4) 

S4 0.3064(2) 0.25 0.25444(19) 0.0098(4) 

S5 0.9805(2) 0.25 0.1160(2) 0.0121(4) 

S6 0.61659(19) 0.25 0.96234(19) 0.0084(4) 
 

a Ueq is defined as one-third of the trace of the orthogonalized Uij tensor. 
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Table 3.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters for PrTbYb2S6.  

Atom (site) x y z Ueq (Å
2)a 

Pr1 0.55027(7) 0.25 0.19511(7) 0.0064(2) 

Tb1 0.18125(6) 0.25 0.00196(6) 0.0075(2) 

Yb1 0.94104(5) 0.25 0.33390(5) 0.0098(2) 

Yb2 0.65988(5) 0.25 0.58556(5) 0.0096(2) 

S1 0.4185(3) 0.25 0.5947(3) 0.0073(6) 

S2 0.8943(3) 0.25 0.5591(3) 0.0085(6) 

S3 0.2357(3) 0.25 0.7711(3) 0.0071(6) 

S4 0.3064(3) 0.25 0.2532(3) 0.0095(6) 

S5 0.9800(3) 0.25 0.1144(3) 0.0101(7) 

S6 0.6159(3) 0.25 0.9625(3) 0.0081(6) 
 

a Ueq is defined as one-third of the trace of the orthogonalized Uij tensor. 
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Table 4.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters for PrDyYb2S6.  

Atom (site) x y z Ueq (Å
2)a 

Pr1 0.54996(5) 0.25 0.19506(5) 0.00797(13) 

Dy1 0.18100(4) 0.25 0.00156(4) 0.00847(13) 

Yb1 0.94108(4) 0.25 0.33369(4) 0.01048(13) 

Yb2 0.66021(4) 0.25 0.58597(4) 0.01040(13) 

S1 0.4181(2) 0.25 0.5945(2) 0.0087(5) 

S2 0.8943(2) 0.25 0.5590(2) 0.0098(5) 

S3 0.2348(2) 0.25 0.7715(2) 0.0088(4) 

S4 0.3051(2) 0.25 0.2525(2) 0.0100(5) 

S5 0.9799(2) 0.25 0.1140(2) 0.0101(5) 

S6 0.6165(2) 0.25 0.9628(2) 0.0095(5) 
 

a Ueq is defined as one-third of the trace of the orthogonalized Uij tensor. 
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Table 5.  Selected Bond Distances (Å) for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy). 
 

Formula Pr1.34Yb2.66S6 PrTbYb2S6 PrDyYb2S6 

Pr(1)-S(1) ×2 3.0127(16) 3.009(2) 3.0058(19) 

Pr(1)-S(3) ×2 3.0068(16) 2.993(2) 3.0004(19) 

Pr(1)-S(4)  2.958(2) 2.943(3) 2.947(3) 

Pr(1)-S(6) ×2 2.8919(16) 2.877(2) 2.8755(19) 

Pr(1)-S(6) 2.930(2) 2.919(3) 2.918(2) 

Ln-S(3) 2.836(2) 2.837(3) 2.821(2) 

Ln-S(4) 2.732(2) 2.715(3) 2.704(3) 

Ln-S(5) ×2 2.7012(16) 2.692(2) 2.6832(18) 

Ln-S(5)  2.881(2) 2.865(3) 2.863(2) 

Ln-S(6) ×2 2.8977(15) 2.901(2) 2.8947(18) 

Yb(1)- S(2) ×2 2.6819(15) 2.684(2) 2.6810(18) 

Yb(1)-S(2)  2.726(2) 2.734(3) 2.731(2) 

Yb(1)-S(3) ×2 2.7471(15) 2.752(2) 2.7426(18) 

Yb(1)-S(5)  2.620(2) 2.630(3) 2.628(2) 

Yb(2)-S(1) ×2 2.7557(15) 2.759(2) 2.7565(17) 

Yb(2)-S(1) 2.673(2) 2.678(3) 2.680(2) 

Yb(2)-S(2)  2.677(2) 2.675(3) 2.672(2) 

Yb(2)-S(4) ×2 2.6134(14) 2.621(2) 2.6194(16) 

 
 
 
 
 
 
 



 17 

 
Table 6.  Magnetic Parameters for PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy). 
 

 

Formula Pcal/µB Peff/µB θp/K R2 

Pr1.34Yb2.66S6 8.48 7.91(1) -36.9(8) 0.99979 

PrTbYb2S6 12.19 11.82(1) -3.1(4) 0.99992 

PrDyYb2S6 12.92 11.38(2) -0.2(7) 0.99979 
 

a Pcal and Peff : calculated [30] and experimental effective magnetic moments per formula unit. 
b Weiss constant (θp) and goodness of fit (R2) obtained from high temperature (100-300 K) data. 
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Figure Captions 

 

Figure 1.  An illustration of the three-dimensional structure of PrTbYb2S6 along the b axis.  

 

Figure 2. Bicapped trigonal prismatic coordination environment of the Pr ions in PrTbYb2S6.    

 

Figure 3.  Inverse molar magnetic susceptibility plotted against temperature between 2 and 300 

K for Pr1.34Yb2.66S6.  Data were taken under an applied magnetic field of 0.1 T.  The straight line 

represents the fit to Curie-Weiss law in the range of 100-300 K. 

 

Figure 4. The plot of the inverse molar magnetic susceptibility vs T for PrTbYb2S6 under an 

applied magnetic field of 0.1 T between 2 and 300 K.  The straight line represents the fit to 

Curie-Weiss law in the range of 100-300 K. 

 

Figure 5.  The temperature dependence of the reciprocal molar magnetic susceptibility for 

PrDyYb2S6 under an applied magnetic field of 0.1 T between 2 and 300 K.  The straight line 

represents the fit to Curie-Weiss law in the range of 100-300 K. 

 

Figure 6.  UV-vis diffuse reflectance spectra of PrLnYb2S6 (Ln = Pr/Yb, Tb, Dy). 

 

 

 

 



 19 

 

 

 

 

 

 

 

 

 

                                                                                                                   Figure 1 



 20 

 

 

 

 

 

 

 

 

Figure 2 



 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

0 50 100 150 200 250 300

0

10

20

30

40

Pr
1.34

Yb
2.66

S
6

χ
-1

 (
O

e 
m

ol
 f

or
m

ul
a 

un
it/

em
u)

Temperature, T (K)

 



 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

0 50 100 150 200 250 300

0

5

10

15

χ
-1
 (

O
e 

m
ol

 f
or

m
ul

a 
un

it/
em

u)

Temperature, T (K)

PrTbYb
2
S

6

 



 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 

0 50 100 150 200 250 300

0

5

10

15

χ
-1
 (

O
e 

m
ol

 f
or

m
ul

a 
un

it/
em

u)

Temperature, T (K)

PrDyYb
2
S

6

 



 24 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.0

0.5

1.0

1.5

α
/s

 (
ar

bi
ta

ry
 u

ni
ts

)

Energy (eV)

PrDyYb
2
S

6

PrTbYb
2
S

6

Pr
1.34

Yb
2.66

S
6

 


